Excel + VBA Optimale Fertigungsmenge

Autor & Copyright: Dipl.-Ing. Harald Nahrstedt

Version: 2016 / 2019 / 2021 / 365

Erstellungsdatum: 17.07.2019

Überarbeitung: 01.12.2023

Quelle: Vorlesungsscript

Beschreibung: Unternehmen müssen häufig ihre Produktpalette überprüfen, um den Gewinn zu maximieren. Dabei sind Einschränkungen zu beachten, wie die zur Verfügung stehenden Ressourcen und die Nachfrage zu den einzelnen Produkten. Zur Lösung wird der Solver von Excel eingesetzt.

Anwendungs-Datei: 06-16-03_OptimaleFertigungsmenge.xlsx

1 Grundlagen

Unternehmen müssen häufig ihre Produktpalette überprüfen, um den Gewinn zu maximieren. Dabei sind Einschränkungen zu beachten, wie die zur Verfügung stehenden Ressourcen und die Nachfrage zu den einzelnen Produkten. In der einfachsten Form umfasst das Problem die Produktzusammenstellung für einen Zeitraum. Zur Lösung wird der Solver von Excel eingesetzt.

Damit der *Solver* in Excel genutzt werden kann, muss unter Register DATEI / OPTIONEN / ADD-INS unter *Verwalten* der Eintrag *Excel-Add-Ins* in der Auswahlliste gewählt und mit *Los* bestätigt werden. Im dem sich darauf öffnenden Dialogfenster Add-Ins wird die Option Solver ausgewählt und bestätigt (Bild 1).

Verfügbare Add-Ins: Analyse-Funktionen Analyse-Funktionen - VBA Euro Currency Tools Solver Qurchsuchen Abbrechen Qurchsuchen Automatisierung Solver	Add-Ins	? ×
Abbrechen Solver Solver Solver	Verfügbare Add-Ins:	ОК
Solver	Solver	Abbrechen Durchsuchen
To all access Outlinessances and Development state Formation	Solver	<u>A</u> utomatisierung

Bild 1. Auswahl des Solvers in den Optionen von Excel unter Add-Ins

Als Beispiel werden in einem Unternehmen 6 Produkte mit den im Arbeitsblatt angegebenen Fertigungsparametern hergestellt (Bild 2). Die Werte beziehen sich auf einen Fertigungsmonat.

	A	В	С	D	E	F	G
1	Produkt	1	2	3	4	5	6
2	Menge [kg]	100	110	90	130	150	110
3	Arbeitszeit/kg-Produkt [Std]	8,1	6,3	4,3	5,4	3,8	6,5
4	Rohstoffe [kg]	3,2	2,4	2,8	3,2	4,3	3,9
5	Stückpreis/kg [Euro]	12,50€	11,00€	9,00€	7,00€	6,00€	3,00€
6	Einstandspreis/kg [Euro]	6,50€	5,70€	3,60€	2,80€	2,20€	1,20€
7	Bedarf/Monat [kg]	120	100	130	150	180	120
8	Ertrag/kg [Euro]	6,00€	5,30€	5,40€	4,20€	3,80€	1,80€
9							
10							
11	Profit [Euro]	2.983,00€					
12				Verfügbar			
13	verwendete Arbeitszeit [Std]	3877	<=	4500			
14	verwendeter Rohstoff [kg]	2326	<=	3200			

Bild 2. Beispiel-Fertigungsparameter für 6 Produkte

Tabelle 1. Bereiche und Formeln im Arbeitsblatt

Bereich	Name	Bereich	Name	Formel
B2:G2	Menge	B8:G8	Ertrag	=StkPreis-EinPreis
B3:G3	Zeit	B11	Profit	=SUMMENPRODUKT(Menge;Ertrag)
B4:G4	Stoffe	B13		=SUMMENPRODUKT(Menge;Zeit)
B5:G5	StkPreis	B14		=SUMMENPRODUKT(Menge;Stoffe)
B6:G6	EinPreis			
B7:G7	Bedarf			

Die Umsatzmengen zeigt anschaulich ein Säulendiagramm (Bild 3).

Bild 3. Vergleich von Umsatzmenge und Bedarfsmenge

Im nächsten Schritt erfolgt unter Register DATEN / ANALYSE der Aufruf des Solvers (Bild 4).

Ziel fes <u>t</u> iegen:		Profit			1
Bis: 🔘 <u>M</u>	lax. O Mi <u>n</u> .	◯ <u>W</u> ert:	0		
Durch Ändern vo	on Varia <u>b</u> lenzellen:				
Menge					Ţ
Unterliegt den N	lebenbedingungen:				
\$B\$13:\$B\$14 <=	\$D\$13:\$D\$14		^] [Hi <u>n</u> zufügen
Menge <= Beda	111				Ändern
					<u>L</u> öschen
					Alles zu <u>r</u> ücksetzen
			~		Laden/Speichern
✓ Nicht einges	chrän <u>k</u> te Variablen als	nicht-negativ festlegen			
Lösungsm <u>e</u> thode auswählen:	e Simplex-LP			\sim	O <u>p</u> tionen
Lösungsmetho	de				
Wählen Sie das das LP Simplex	GRG-Nichtlinear-Mod Modul für lineare Sol	dul für Solver-Probleme, ver-Probleme und das E	die kontinuierlic A-Modul für Sol	h nicht ver-Pr	linear sind. Wählen Sie obleme, die nicht

Bild 4. Das Dialogfenster des Solvers

Als Ziel wird *Profit* eingetragen und die Option *Max*. festgelegt. Als veränderbare Zellen wird der Bereich *Menge* eingetragen (Bild 5).

Ziel fe	s <u>t</u> legen:		Profit	1	
Bis:	Мах.	◯ Mi <u>n</u> .	◯ <u>W</u> ert:	0	
Durch	Ändern von Varia	hlenzellen			

Bild 5. Ziel und Variable festlegen

Über die Schaltfläche *Hinzufügen* werden die Restriktionen angegeben. Dazu zunächst die Einschränkung der Arbeitszeit und der Rohstoffmenge (Bild 6).

Zellbezug: Nebenbedingung: \$B\$13:\$B\$14 \$\$=\$D\$13:\$D\$14

Bild 6. Einschränkungen für Arbeitszeit und Rohstoffmenge

Mit der Schaltfläche *Hinzufügen* wird die Restriktion im Solver vermerkt. Die zweite Einschränkung bezieht sich auf Menge und Bedarf (Bild 7).

Nebenbedingung hinzufügen	×
Zellbezug: No Menge C = V Bu	ebe <u>n</u> bedingung: edarf 1
<u>O</u> K Hi <u>n</u> zufügen	Abbre <u>c</u> hen

Bild 7. Einschränkungen zur Fertigungsmenge

Als Lösungsmethode wird *Simplex-LP* ausgewählt und unter der Schaltfläche *Optionen* werden Nebenbedingungsgenauigkeit und Lösungsgrenzwerte eingetragen (Bild 8).

N <u>e</u> benbedingungsgenauigkeit:	0,000001
Automatische Skalierung verwenden	
Lterationsergebnisse anzeigen	
Lösungsgrenzwerte	
Höchs <u>t</u> zeit (Sekunden):	100
lterationen:	100

Bild 8. Optionen für den Solver

Mit der Schaltfläche Lösen startet der Solver und meldet nach einer Folge von Iterationen eine Lösung (Bild 9).

	angungen
und Optionen wurden eingehalten.	Berichte
Solver-Lösung akzeptieren	Antwort Sensitivität Grenzwerte
O Ursprüngliche Werte wiederherstellen	
OK Abbrechen	<u>S</u> zenario speichern
Solver hat eine Lösung gefunden. Alle Neben	bedingungen und Optionen wurden eingehalten.

Bild 9. Ergebnis-Meldung

Wird das Ergebnis mit OK akzeptiert, dann wird die Lösung ins Arbeitsblatt eingetragen (Bild 10).

	A	В	С	D	E	F	G
1	Produkt	1	2	3	4	5	6
2	Menge [kg]	120	100	130	150	180	120
3	Arbeitszeit/kg-Produkt [Std]	8,1	6,3	4,3	5,4	3,8	6,5
4	Rohstoffe [kg]	3,2	2,4	2,8	3,2	4,3	3,9
5	Stückpreis/kg [Euro]	12,50€	11,00€	9,00€	7,00€	6,00€	3,00€
6	Einstandspreis/kg [Euro]	6,50€	5,70€	3,60€	2,80€	2,20€	1,20€
7	Bedarf/Monat [kg]	120	100	130	150	180	120
8	Ertrag/kg [Euro]	6,00€	5,30€	5,40€	4,20€	3,80€	1,80€
9							
10							
11	Profit [Euro]	3.482,00€					
12				Verfügbar			
13	verwendete Arbeitszeit [Std]	4435	<=	4500			
14	verwendeter Rohstoff [kg]	2710	<=	3200			

Bild 10. Ergebnis durch den Solver-Einsatz